TO: ALL PLANHOLDERS

This Bid Addendum No. 02 amends the Bid Documents, Drawings, and Specifications dated January 24, 2020, as prepared by:

Five Rivers MetroParks
409 E. Monument Ave., Third Floor
Dayton OH 45402-1374
(937) 275-7275

This addendum consists of the following:

Changes to the Contract Requirements –

1) Delete in its entirety Construction Drawing Sheet P-101, dated 6/05/2019 and replace with Construction Drawing Sheet P-101, dated 2/28/2020, and attached as Appendix A, which adds requirements pertaining to the fire sprinkler system.

2) Add the following Specification Sections, attached as Appendices B-F:
 a) 21 05 17 - SLEEVES AND SLEEVE SEALS FOR FIRE PROTECTION PIPING
 b) 21 05 18 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING
 c) 21 05 29 - HANGERS AND SUPPORTS FOR FIRE PROTECTION PIPING AND EQUIPMENT
 d) 21 05 53 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
 e) 21 13 13 - WET-PIPE SPRINKLER SYSTEMS

3) Wherever there is a conflict between the requirements in Bid Addendum No. 01, Item 3.e and the requirements included in this Bid Addendum No. 02, the latter shall govern.

4) Delete in its entirety Specification Section 22 07 19 - PLUMBING PIPING INSULATION, dated 06/21/19 and replace with new Specification Section 22 07 19 - PLUMBING PIPING INSULATION, dated 02/28/20, which is attached as Appendix G. Changes to the specification are in bold type in Paragraph 2.1 D – Non-flexible Fiberglass.
APPENDICES

Appendix B - Specification Section 21 05 17 - SLEEVES AND SLEEVE SEALS FOR FIRE PROTECTION PIPING
Appendix C - Specification Section 21 05 18 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING
Appendix D - Specification Section 21 05 29 - HANGERS AND SUPPORTS FOR FIRE PROTECTION PIPING AND EQUIPMENT
Appendix E - Specification Section 21 05 53 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT
Appendix F - Specification Section 21 13 13 - WET-PIPE SPRINKLER SYSTEMS
Appendix G - Specification Section 22 07 19 - PLUMBING PIPING INSULATION, dated 02/28/20

END OF BID ADDENDUM NO. 02
CODED NOTES:
1. PROVIDE THERMOSTATIC MIXING VALVE (TMV1) TO SERVE EXISTING SINK.
2. INSTALL EMERGENCY GAS SHUT-OFF VALVE FURNISHED WITH HOSE.
3. 1-1/2" G TO TO MAKEUP AIR UNIT ON ROOF. PROVIDE SHUT-OFF VALVE AND DIRT LEG. MAKE FINAL CONNECTION (200 CFH).
4. 3/4" G TO CONVERSION OVEN (90 CFH).
5. 3/4" G TO RANGE (270 CFH).
6. EXISTING GREASE INTERCEPTOR TO BE CLEANED.
7. 1" G UP TO ROOFTOP UNIT. PROVIDE SHUT-OFF VALVE AND DIRT LEG. MAKE FINAL CONNECTION (60 CFH).
8. CONNECT EXISTING GAS LINE TO NEW GAS-FIRED WATER HEATER (199 CFH).
9. CONNECT EXISTING GAS LINE TO NEW HVAC EQUIPMENT.
10. EXTEND EXISTING FIRE SPRINKLER SYSTEM TO COVER AREA INDICATED IN ACCORDANCE WITH NFPA 13. MATCH EXISTING FIRE SPRINKLER SYSTEM MATERIALS. REFER TO SPRINKLER SYSTEM TABLE ON THIS SHEET.

SPRINKLER SYSTEM

<table>
<thead>
<tr>
<th>CLASSIFICATION</th>
<th>AREA</th>
<th>HM</th>
<th>KM</th>
<th>SF</th>
<th>HD</th>
<th>NSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIGHT HAZARD</td>
<td>LIGHT HAZARD</td>
<td>0.10</td>
<td>200</td>
<td>100</td>
<td>50</td>
<td>0.4</td>
</tr>
<tr>
<td>ORDINARY HAZARD</td>
<td>ORDINARY HAZARD</td>
<td>0.11</td>
<td>100</td>
<td>100</td>
<td>200</td>
<td>0.3</td>
</tr>
</tbody>
</table>

© Copyright 2019, Barge Design Solutions, Inc. ALL RIGHTS RESERVED
SECTION 21 05 17 - SLEEVES AND SLEEVE SEALS FOR FIRE PROTECTION PIPING

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Sleeves.
 2. Sleeve-seal systems.

1.2 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.

B. Galvanized-Steel Wall Pipes: ASTM A 53/A 53M, Schedule 40, with plain ends and welded steel collar; zinc coated.

C. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

E. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

F. Molded-PE or -PP Sleeves: Removable, tapered-cup shaped, and smooth outer surface with nailing flange for attaching to wooden forms.

G. Molded-PVC Sleeves: With nailing flange for attaching to wooden forms.

2.2 SLEEVE-SEAL SYSTEMS

A. Manufacturers: Advance Products & Systems, GPT, Metraflex, Pipeline Seal and Insulator.

B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
2. Pressure Plates: Carbon steel.
3. Connecting Bolts and Nuts: Carbon steel, with corrosion-resistant coating of length required to secure pressure plates to sealing elements.

2.3 GROUT

B. Characteristics: Nonshrink; recommended for interior and exterior applications.
C. Design Mix: 5000-psi, 28-day compressive strength.
D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 2. Cut sleeves to length for mounting flush with both surfaces.
 a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
D. Install sleeves for pipes passing through interior partitions.
 1. Cut sleeves to length for mounting flush with both surfaces.
 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."
E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. Comply with requirements for firestopping specified in Section 078413 "Penetration Firestopping."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

A. Use sleeves and sleeve seals for the following piping-penetration applications:

1. Exterior Concrete Walls and Concrete Slab on Grade:
 a. Piping Smaller Than NPS 6: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 b. Piping NPS 6 and Larger: Galvanized-steel wall sleeves with sleeve-seal system.
 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.

END OF SECTION 21 05 17
SECTION 21 05 18 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 SUMMARY
 A. Section Includes:
 1. Escutcheons.
 2. Floor plates.

1.2 SUBMITTALS
 A. Action Submittals:
 1. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS
 A. One-Piece, Steel Type: With polished, chrome-plated finish and setscrew fastener.
 B. One-Piece, Stainless-Steel Type: With polished stainless-steel finish.
 C. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped steel with polished, chrome-plated finish and spring-clip fasteners.
 D. One-Piece, Stamped-Steel Type: With polished, chrome-plated finish and spring-clip fasteners.
 E. Split-Plate, Stamped-Steel Type: With polished, chrome-plated finish; concealed or exposed-rivet hinge; and spring-clip fasteners.

2.2 FLOOR PLATES
 A. Split Floor Plates: Steel with concealed hinge.

PART 3 - EXECUTION

3.1 INSTALLATION
 A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
B. Install escutcheons with inside diameter closely fitting around outside diameter of piping and piping insulation and with outside diameter completely covering opening.

1. Escutcheons for New Piping:
 a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep pattern.
 b. Uninsulated Piping: One-piece steel or split-plate steel.
 c. Insulated Piping: One-piece stamped steel or split-plate stamped steel.

2. Escutcheons for Existing Piping:
 b. Insulated Piping: Split-plate, stamped steel.

C. Install floor plates for piping penetrations of equipment-room floors.

D. Install floor plates with inside diameter closely fitting around piping and piping insulation and with outside diameter completely covering opening.

1. New Piping: Split floor plate.
2. Existing Piping to Remain: Split floor plate.

3.2 FIELD QUALITY CONTROL

A. Using new materials, replace broken and damaged escutcheons and floor plates.

END OF SECTION 21 05 18
SECTION 21 05 29 - HANGERS AND SUPPORTS FOR FIRE PROTECTION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Metal pipe hangers and supports.
 2. Trapeze pipe hangers.
 3. Fiberglass pipe hangers.
 4. Metal framing systems.
 5. Fiberglass strut systems.
 6. Thermal-hanger shield inserts.
 7. Fastener systems.
 8. Pipe stands.
 9. Equipment supports.

1.2 DEFINITIONS

A. MSS: Manufacturers Standardization Society of The Valve and Fittings Industry Inc.

B. Terminology: As defined in MSS SP-90, “Guidelines on Terminology for Pipe Hangers and Supports.”

1.3 PERFORMANCE REQUIREMENTS

A. Delegated Design: Design trapeze pipe hangers and equipment supports, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

B. Structural Performance: Hangers and supports for fire protection piping and equipment shall withstand the effects of gravity loads and stresses within limits and under conditions indicated according to ASCE/SEI 7.

 1. Design supports for multiple pipes, including pipe stands, capable of supporting combined weight of supported systems, system contents, and test water.
 2. Design equipment supports capable of supporting combined operating weight of supported equipment and connected systems and components.

1.4 SUBMITTALS

A. Action Submittals:
 1. Product Data: For each type of product indicated.
2. Shop Drawings: Signed and sealed by a qualified professional engineer. Show fabrication and installation details and include calculations for the following; include Product Data for components:

 a. Trapeze pipe hangers.
 b. Metal framing systems.
 c. Fiberglass strut systems.
 d. Pipe stands.
 e. Equipment supports.

B. Delegated-Design Submittal: For trapeze hangers indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

 1. Detail fabrication and assembly of trapeze hangers.
 2. Design Calculations: Calculate requirements for designing trapeze hangers.

C. Informational Submittals:

 1. Welding certificates.

D. Closeout Submittals:

 1. Operation and Maintenance Data

1.5 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

C. SMACNA.

D. Pipe Hanger Standards: Manufacturers Standardization Society (MSS) SP-58, SP-89, and SP-69, as referenced.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

A. Manufacturers: Subject to compliance with requirements, provide products by one of the following. Where a specific manufacturer is listed in the Drawings, this shall be considered the Basis-of-Design.

 1. B-line Systems, Inc; a division of Cooper Industries.
 2. Carpenter & Paterson, Inc.
 3. ERICO/Michigan Hanger Co.
5. Grinnell Corp.
8. PHD Manufacturing, Inc.

B. Carbon-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

C. Saddles
 1. Material Galvanized Steel, 180-degree shape, each saddle marked with insulation O.D. Standard manufacturers gauge per insulated pipe size.

D. Stainless-Steel Pipe Hangers and Supports:
 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 2. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.

E. Copper Pipe Hangers:
 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of copper-coated steel or stainless steel.

2.2 TRAPEZE PIPE HANGERS
A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 FIBERGLASS PIPE HANGERS
A. Clevis-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 1, steel pipe hanger except hanger is made of fiberglass or fiberglass-reinforced resin.
B. Strap-Type, Fiberglass Pipe Hangers:
 1. Description: Similar to MSS SP-58, Type 9 or Type 10, steel pipe hanger except hanger is made of fiberglass-reinforced resin.
 2. Hanger Rod and Fittings: Continuous-thread rod, washer, and nuts made of stainless steel.

2.4 FASTENER SYSTEMS

A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel or stainless-steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.

B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

C. Low-Type, Single-Pipe Stand: One-piece plastic or stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:
 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 2. Base: Plastic or stainless steel.
 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:
 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 2. Bases: One or more; plastic.
 3. Vertical Members: Two or more protective-coated-steel channels.
 4. Horizontal Member: Protective-coated-steel channel.
 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.

B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.

2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.

B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.

1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.

C. Fiberglass Pipe-Hanger Installation: Comply with applicable portions of MSS SP-69 and MSS SP-89. Install hangers and attachments as required to properly support piping from building structure.

D. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.

E. Fiberglass Strut System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled fiberglass struts.
F. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

G. Fastener System Installation:

1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.

2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

H. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.

I. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.

K. Install hangers and supports to allow controlled thermal movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.

L. Install lateral bracing with pipe hangers and supports to prevent swaying.

M. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

N. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.

O. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

P. Insulated Piping:

1. Attach clamps and spacers to piping.

 a. Piping Operating Above Ambient Air Temperature: Clamp may project through insulation.

 b. Piping Operating Below Ambient Air Temperature: Use thermal-hanger shield insert with clamp sized to match OD of insert.

 c. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 a. Option: Thermal-hanger shield inserts may be used. Include steel weight-distribution plate for pipe NPS 4 and larger if pipe is installed on rollers.

4. Shield Dimensions for Pipe: Not less than the following:
 a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 b. NPS 4: 12 inches long and 0.06 inch thick.
 c. NPS 5 and NPS 6: 18 inches long and 0.06 inch thick.
 d. NPS 8 to NPS 14: 24 inches long and 0.075 inch thick.
 e. NPS 16 to NPS 24: 24 inches long and 0.105 inch thick.

5. Pipes NPS 8 and Larger: Include wood or reinforced calcium-silicate-insulation inserts of length at least as long as protective shield.

6. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS
 A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
 B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
 C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS
 A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
 B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
 C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 2. Obtain fusion without undercut or overlap.
 3. Remove welding flux immediately.
4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.

B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.

1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.

B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Division 9.

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.

B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.

C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.

D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.

E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.

F. Use stainless-steel pipe hangers, fiberglass pipe hangers, fiberglass strut systems, and stainless-steel or corrosion-resistant attachments for hostile environment applications.

G. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.

H. Use padded hangers for piping that is subject to scratching.
I. Use thermal-hanger shield inserts for insulated piping and tubing.

J. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of non-insulated or insulated, stationary pipes NPS 1/2 to NPS 30.
2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
8. Adjustable Band Hangers (MSS Type 9): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of non-insulated, stationary pipes NPS 1/2 to NPS 8.
10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 8.
11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of non-insulated, stationary pipes NPS 3/8 to NPS 3.
12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.

K. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.

L. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

M. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
6. C-Clamps (MSS Type 23): For structural shapes.
7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel I-beams for heavy loads.
10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:

 a. Light (MSS Type 31): 750 lb.
 b. Medium (MSS Type 32): 1500 lb.
 c. Heavy (MSS Type 33): 3000 lb.
13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

N. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.

O. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.
 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 a. Horizontal (MSS Type 54): Mounted horizontally.
 b. Vertical (MSS Type 55): Mounted vertically.
 c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.

P. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.

Q. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.

R. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.
END OF SECTION 21 05 29
SECTION 21 05 53 - IDENTIFICATION FOR FIRE-SUPPRESSION PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:
 1. Equipment labels.
 2. Warning signs and labels.
 3. Pipe labels.
 4. Stencils.
 5. Valve tags.
 6. Warning tags.

1.2 SUBMITTALS

A. Action Submittals:
 1. Product Data: For each type of product indicated.
 2. Samples: For color, letter style, and graphic representation required for each identification material and device.
 3. Equipment Label Schedule: Include a listing of all equipment to be labeled with the proposed content for each label.
 4. Valve numbering scheme.

B. Closeout Submittal:
 1. Valve Schedules: For each piping system to include in maintenance manuals.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Metal Labels for Equipment:
 1. Material and Thickness: Brass: 0.032-inch, stainless steel: 0.025-inch, aluminum: 0.032-inch, or anodized aluminum: 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 2. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
 3. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
5. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

B. Plastic Labels for Equipment:

1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, and having predrilled holes for attachment hardware.
4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
7. Fasteners: Stainless-steel rivets or self-tapping screws.
8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

C. Label Content: Include equipment's Drawing designation or unique equipment number, drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number where equipment is specified.

D. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 WARNING SIGNS AND LABELS

A. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8-inch-thick, and having predrilled holes for attachment hardware.

B. Letter Color: Black.

C. Background Color: Yellow.

D. Maximum Temperature: Able to withstand temperatures up to 160 deg F.

E. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.

F. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

G. Fasteners: Stainless-steel rivets or self-tapping screws.
H. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.

I. Label Content: Include caution and warning information plus emergency notification instructions.

2.3 PIPE LABELS

A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.

B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.

C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.

D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.

1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.

2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.4 STENCILS

A. Stencils for Piping:

1. Lettering Size: Size letters according to ASME A13.1 for piping.

2. Stencil Material: Fiberboard or metal.

3. Stencil Paint: Exterior, gloss, alkyd enamel in colors complying with recommendations in ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

4. Identification Paint: Exterior, acrylic enamel in colors according to ASME A13.1 unless otherwise indicated. Paint may be in pressurized spray-can form.

B. Stencils for Access Panels and Door Labels, Equipment Labels, and Similar Operational Instructions:

1. Lettering Size: Minimum letter height of 1/2 inch for viewing distances up to 72 inches and proportionately larger lettering for greater viewing distances.

2. Stencil Material: Fiberboard or metal.

4. Identification Paint: Exterior, acrylic enamel. Paint may be in pressurized spray-can form.

2.5 VALVE TAGS

A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
1. Tag Material: Brass: 0.032-inch, stainless steel: 0.025-inch, aluminum: 0.032-inch, or anodized aluminum: 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
2. Fasteners: Brass wire-link chain, or beaded chain, or S-hook.

B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.

1. Valve-tag schedule shall be included in operation and maintenance data.

2.6 WARNING TAGS

A. Description: Preprinted or partially preprinted accident-prevention tags of plasticized card stock with matte finish suitable for writing.

1. Size: 3 by 5-1/4 inches minimum.
2. Fasteners: Brass grommet and wire.
3. Nomenclature: Large-size primary caption such as "DANGER," "CAUTION," or "DO NOT OPERATE."

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.

B. Coordinate installation of identifying devices with locations of access panels and doors.

C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

A. Install or permanently fasten labels on each major item of mechanical equipment.

B. Locate equipment labels where accessible and visible.
3.4 PIPE LABEL INSTALLATION

A. Stenciled Pipe Label Option: Stenciled labels may be provided instead of manufactured pipe labels, at Installer's option. Install stenciled pipe labels, complying with ASME A13.1, with painted, color-coded bands or rectangles on each piping system.

1. Identification Paint: Use for contrasting background.

B. Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:

1. Near each valve or control device.
2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
4. At access doors, manholes, and similar access points that permit view of concealed piping.
5. Near major equipment items and other points of origination and termination.
6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.

C. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.

D. Pipe Label Color Schedule:

1. Compressed Air Piping:
 a. Background: Safety blue.

2. Fire Protection Piping:
 a. Background: Red.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
2. Valve-Tag Colors: Natural.

3.6 WARNING-TAG INSTALLATION

A. Write required message on, and attach warning tags to, equipment and other items where required.

END OF SECTION 21 05 53
SECTION 21 13 13 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

1. Pipes, fittings, and specialties.
2. Fire-protection valves.
5. Pressure gages.

1.2 DEFINITIONS

A. High-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure higher than standard 175 psig maximum.

1.3 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.4 PERFORMANCE REQUIREMENTS

A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.

B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

1. Contractor to perform a flow test and utilize results of flow test for system design.

C. Sprinkler system design shall be reviewed and approved by the design Fire Protection Engineer before being submitted for approval by authorities having jurisdiction.

1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
2. Sprinkler Occupancy Hazard Classifications:
 c. Equipment Rooms: Ordinary Hazard, Group 1.
3. Minimum Density for Automatic-Sprinkler Piping Design:
 a. Light-Hazard Occupancy: 0.10 gpm over 1500-sq. ft. area.
 b. Ordinary-Hazard, Group 1 Occupancy: 0.15 gpm over 1500-sq. ft.

4. Maximum Protection Area per Sprinkler:
 a. Office Spaces: 225 sq. ft.
 b. Storage Areas: 130 sq. ft.
 c. Mechanical Equipment Rooms: 130 sq. ft.
 d. Equipment Rooms: 130 sq. ft.
 e. Other Areas: According to NFPA 13 recommendations unless otherwise indicated.

5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 a. Light-Hazard Occupancies: 100 gpm for 30 minutes.
 b. Ordinary-Hazard Occupancies: 250 gpm for 60 to 90 minutes.

1.5 SUBMITTALS

A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work. Also include diagrams for power, signal, and control wiring.

C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.

D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 1. Domestic water piping.
 2. Compressed air piping.
 3. HVAC hydronic piping.
 4. Items penetrating finished ceiling include the following:
 a. Lighting fixtures.
 b. Air outlets and inlets.

E. Qualification Data: For qualified Installer and NICET designer.

F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, for approval by the design fire protection engineer before sending for approval by authorities.
having jurisdiction, including hydraulic calculations if applicable. Identify sprinkler heads by the same designations used in their agency approval documents.

G. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."

H. Field quality-control reports.

I. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Installer Qualifications:

1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems. Base calculations on results of fire-hydrant flow test. Design shall be signed by a NICET Level III or IV and for review by the design FPE.

B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

C. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:

1. NFPA 13, "Installation of Sprinkler Systems."
2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

D. Grooved Products: If grooved products are used, provide couplings, fittings, valves, and specialties from a single manufacturer.

1.7 PROJECT CONDITIONS

A. Interruption of Existing Sprinkler Service: Do not interrupt sprinkler service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary sprinkler service according to requirements indicated:

1. Notify Architect and/or Owner no fewer than five days in advance of proposed interruption of sprinkler service.
2. Do not proceed with interruption of sprinkler service without Architect's and/or Owner's written permission.

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.
1.9 EXTRA MATERIALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

A. Standard Weight, Black-Steel Pipe: ASTM A 53/A 53M, Type E, Grade B. Pipe ends may be factory or field formed to match joining method.

C. Uncoated, Steel Couplings: ASTM A 865, threaded.

E. Malleable- or Ductile-Iron Unions: UL 860.

F. Cast-Iron Flanges: ASME 16.1, Class 125.

G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.

I. Grooved-Joint, Steel-Pipe Appurtenances:

1. Pressure Rating: 175 psig minimum.

2. Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 536, ductile-iron casting; with dimensions matching steel pipe. Short-pattern fittings with flow characteristics similar to standard fittings are acceptable.

3. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber center-leg gasket with pipe stop, and ASTM A449 bolts and nuts.
2.3 PIPING JOINING MATERIALS

A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.

1. Class 125, Cast-Iron Flanges and Class 150, Bronze Flat-Face Flanges: Full-face gaskets.
2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.

B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.

C. Solvent Cements for Joining CPVC Piping and Tubing: ASTM F 493, solvent cement recommended by pipe and fitting manufacturer, and made for joining CPVC sprinkler pipe and fittings. Include cleaner or primer recommended by pipe and fitting manufacturer.

1. Use solvent cement that has a VOC content of 490 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
2. Use adhesive primer that has a VOC content of 650 g/L or less when calculated according to 40 CFR 59, Subpart D (EPA Method 24).
3. Coordinate submittal requirements of the VOC information with the LEED application requirements.

D. Grooved-Joint Lubricants: Lubricant approved for the gasket elastomer and fluid media by the grooved-joint coupling manufacturer.

E. Plastic, Pipe-Flange Gasket, and Bolts and Nuts: Type and material recommended by piping system manufacturer unless otherwise indicated.

2.4 COVER SYSTEM FOR SPRINKLER PIPING

A. Description: System of support brackets and covers made to protect sprinkler piping.

B. Brackets: Glass-reinforced nylon.

C. Covers: Extruded PVC sections of length, shape, and size required for size and routing of CPVC piping.

2.5 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

1. Valves shall be UL listed or FM approved.
B. Ball Valves:
 2. Valves NPS 1-1/2 and Smaller: Bronze or brass body with threaded or grooved ends.
 3. Valves NPS 2: Bronze body with threaded ends or ductile-iron body with grooved ends.

C. Check Valves:
 2. Pressure Rating: 250 psig minimum.
 3. Type: Spring-assisted swing check.
 5. End Connections: Flanged or grooved.

D. Bronze OS&Y Gate Valves:
 4. End Connections: Threaded.

E. Iron OS&Y Gate Valves:
 2. Pressure Rating: 250 psig minimum.
 3. Body Material: Cast or ductile iron.
 4. End Connections: Flanged or grooved.

F. Indicating-Type Valves:
 2. Pressure Rating: 175 psig minimum.
 3. Valves NPS 2 and Smaller:
 a. Valve Type: Ball.
 b. Body Material: Bronze or brass.
 c. End Connections: Threaded or grooved.
 4. Valves NPS 2-1/2 and Larger:
 a. Valve Type: Butterfly.
 b. Body Material: Cast or ductile iron.
 c. End Connections: Flanged, grooved, or wafer.
 d. Seat: Pressure-responsive elastomer.
 e. Stem: Stainless steel, offset from the disc centerline to provide complete seating.
 5. Valve Operation: Weatherproof actuator housing with integral electrical, 125-V ac, prewired, single-circuit, supervisory switch indicating device.
2.6 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

2. Pressure Rating: 175 psig minimum.
4. Type: Mechanical-T and -cross fittings.
5. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
6. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
7. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection, Test, and Drain Assemblies:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Bronze or ductile-iron housing with orifice, sight glass, and integral test valve.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded or grooved ends.

C. Branch Line Testers:

4. Size: Same as connected piping.
5. Inlet: Threaded.
6. Drain Outlet: Threaded and capped.
7. Branch Outlet: Threaded, for sprinkler.

D. Sprinkler Inspector's Test Fittings:

2. Pressure Rating: 175 psig minimum.
3. Body Material: Brass or ductile-iron housing with sight glass.
4. Size: Same as connected piping.
5. Inlet and Outlet: Threaded or grooved ends.

E. Adjustable Drop Nipples:

2. Pressure Rating: 250 psig minimum.
4. Size: Same as connected piping.
5. Length: Adjustable.
6. Inlet and Outlet: Threaded.

F. Flexible, Sprinkler Hose Fittings:

2. Type: Flexible hose for connection to sprinkler, and with bracket for connection to ceiling grid. Hose of type 304 stainless steel braid over flexible tube with threaded male fitting or coupling at one end and reducer and female threaded connection at other end. Union joints.
4. Size: Same as connected piping, for sprinkler.

2.7 SPRINKLERS

A. General Requirements:

3. Sprinklers shall be quick-response type heads. Sprinklers with “O” rings are prohibited.
4. Sprinklers shall have hexagonal wrench boss cast into body.

B. Automatic Sprinklers with Heat-Responsive Element:

2. Nonresidential Applications: UL 199.
3. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

1. Characteristics:
 a. Nominal 1/2-inch Orifice: With Discharge Coefficient K 5.6

D. Sprinkler Finishes:

1. Chrome plated.
2. Bronze.
3. Painted.

E. Special Coatings:

1. Wax.
2. Lead.
3. Corrosion-resistant paint.
F. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers. Escutcheons listed, furnished, and approved for use with sprinkler heads provided.

1. Ceiling Mounting: Chrome-plated steel, one piece, flat.

G. Sprinkler Guards:

2. Type: Wire cage with fastening device for attaching to sprinkler.
3. Guards listed, furnished, and approved for use with sprinkler heads provided.

2.8 ALARM DEVICES

A. Alarm-device types shall match piping and equipment connections.

B. Water-Flow Indicators:

3. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
4. Type: Paddle operated.
6. Design Installation: Horizontal or vertical.

C. Valve Supervisory Switches:

2. Type: Electrically supervised.
4. Design: Signals that controlled valve is in other than fully open position.

2.9 PRESSURE GAGES

A. Standard: UL 393.

B. Dial Size: 3-1/2- to 4-1/2-inch diameter.

C. Pressure Gage Range: 0 to 250 psig minimum. Provide pressure

D. Water System Piping Gage: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION
3.1 PREPARATION

A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.

B. Report test results promptly and in writing.

3.2 PIPING INSTALLATION

A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.

1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.

B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.

C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.

D. Install unions adjacent to each valve in pipes NPS 2 and smaller.

E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2 ½ and larger end connections.

F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.

G. Install sprinkler piping with drains for complete system drainage.

H. Install sprinkler control valves, test assemblies, and drain risers adjacent to standpipes when sprinkler piping is connected to standpipes.

I. Install alarm devices in piping systems.

J. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.

K. Install pressure gages on riser or feed main, at each sprinkler test connection. Include pressure gages with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gage and valve. Install gages to permit removal, and install where they will not be subject to freezing.

L. Fill sprinkler system piping with water.

M. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 210517 "Sleeves and Sleeve Seals for Fire-Suppression Piping."
N. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 210518 "Escutcheons for Fire-Suppression Piping."

3.3 JOINT CONSTRUCTION

A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.

B. Install unions adjacent to each valve in pipes NPS 2 and smaller.

C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.

D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.

E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.

F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:

1. Apply appropriate tape or thread compound to external pipe threads.
2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.

H. Steel-Piping, Pressure-Sealed Joints: Join lightwall steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts in accordance with the manufacturer’s published instructions. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints. Grooved-joint coupling manufacturer to provide factory-trained field representative for on-site training for contractor’s personnel in proper grooved-joint item fabrication and installation procedures. Representative shall periodically visit job site to ensure best practices in grooved product installation are being followed. Contractor shall remove and replace any improperly installed products.

J. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts in accordance with the manufacturer’s published instructions. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints. Grooved-joint coupling manufacturer to provide factory-trained field representative for on-site training for contractor’s personnel in proper grooved-joint item fabrication and installation procedures. Representative shall periodically
visit job site to ensure best practices in grooved product installation are being followed. Contractor shall remove and replace any improperly installed products.

K. Steel-Piping, Pressure-Sealed Joints: Join Schedule 5 steel pipe and steel pressure-seal fittings with tools recommended by fitting manufacturer.

L. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

M. Plastic-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:

2. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix.

3.4 INSTALLATION OF COVER SYSTEM FOR SPRINKLER PIPING

A. Install cover system, brackets, and cover components for sprinkler piping according to manufacturer's "Installation Manual" and with NFPA 13 or NFPA 13R for supports.

3.5 VALVE AND SPECIALTIES INSTALLATION

A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.

B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.

C. Install check valve in each water-supply connection.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

B. Do not install pendent or sidewall, wet-type sprinklers in areas subject to freezing.

C. Install sprinklers into flexible, sprinkler hose fittings and install hose into bracket on ceiling grid.

D. Do not install sprinklers that have been dropped, damaged, show a visible loss of fluid, or have a cracked glass bulb.

E. The sprinkler bulb protector shall be removable by hand without tools or devices that may damage the bulb.
3.7 IDENTIFICATION

A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.

B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.8 FIELD QUALITY CONTROL

A. Perform tests and inspections.

B. Tests and Inspections:
 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 4. Energize circuits to electrical equipment and devices.
 5. Coordinate with fire-alarm tests. Operate as required.
 6. Verify that equipment hose threads are same as local fire-department equipment.

C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.

D. Prepare test and inspection reports.

3.9 CLEANING

A. Clean dirt and debris from sprinklers.

B. Remove and replace sprinklers with paint other than factory finish.

3.10 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.11 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2, shall be the following:
 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.

3.12 SPRINKLER SCHEDULE

A. Use sprinkler types in subparagraphs below for the following applications:
 1. Rooms without Ceilings: Upright sprinklers.
 2. Rooms with Suspended Ceilings: Pendent sprinklers.

B. Provide sprinkler types in subparagraphs below with finishes indicated.
 1. Pendent Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view; wax coated where exposed to acids, chemicals, or other corrosive fumes.

END OF SECTION 21 13 13
SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 SUMMARY
 A. Section includes insulating plumbing piping systems.

1.2 SUBMITTALS
 A. Action Submittals:
 1. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.3 QUALITY ASSURANCE
 A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.4 DELIVERY, STORAGE, AND HANDLING
 A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.
 B. Protection: Do not permit mineral fiber or calcium silicate insulation to get wet. Mineral fiber or calcium silicate insulation that is or has been wet shall be removed from the project site.

1.5 COORDINATION
 A. Coordinate sizes and locations of supports, hangers, and insulation shields.
 B. Coordinate clearance requirements with piping Installer for piping insulation application.
1.6 SCHEDULING

A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

A. Products shall not contain asbestos, lead, mercury, or mercury compounds.

B. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.

C. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.

D. Non-flexible Fiberglass

1. O-C fiberglas ASJ/SSL-II pipe insulation with all service jacket (ASJ).
2. Thermal conductivity (K value): Not greater than 0.23 at mean temperature of 75 deg F.
3. Manufacturers: Subject to compliance with requirements, provide products by one of the following. Where a specific manufacturer is listed in the Drawings, this shall be considered the Basis-of-Design.
 a. Manville
 b. Owens-Corning
 c. Manson
 d. Knauf.

2.2 ADHESIVES

A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.

B. ASJ Adhesive, and FSK and PVDC Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.

C. PVC Jacket Adhesive: Compatible with PVC jacket.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
1. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.

C. Vapor-Barrier Mastic: Solvent based; suitable for indoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 35-mil dry film thickness.
2. Service Temperature Range: 0 to 180 deg F.

D. Vapor-Barrier Mastic: Solvent based; suitable for outdoor use on below-ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 0.05 perm at 30-mil dry film thickness.
2. Service Temperature Range: Minus 50 to plus 220 deg F.
3. Solids Content: ASTM D 1644, 33 percent by volume and 46 percent by weight.

E. Breather Mastic: Water based; suitable for indoor and outdoor use on above-ambient services.

1. Water-Vapor Permeance: ASTM F 1249, 1.8 perms at 0.0625-inch dry film thickness.
2. Service Temperature Range: Minus 20 to plus 180 deg F.
3. Solids Content: 60 percent by volume and 66 percent by weight.

2.4 LAGGING ADHESIVES

A. Description: Comply with MIL-A-3316C, Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates.

1. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over pipe insulation.
2. Service Temperature Range: 0 to plus 180 deg F.

2.5 SEALANTS

A. FSK and Metal Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

B. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:

1. Materials shall be compatible with insulation materials, jackets, and substrates.
2. Fire- and water-resistant, flexible, elastomeric sealant.
3. Service Temperature Range: Minus 40 to plus 250 deg F.

2.6 FACTORY-APPLIED JACKETS

A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:

1. All-Service Jacket (ASJ): White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I. Maximum water vapor permeance 0.02 perms.
2. All-Service Jacket – Self-Sealing Lap (ASJ-SSL): ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I. Maximum water vapor permeance 0.02 perms.
3. Foil-Scrim Kraft (FSK) Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II. Maximum water vapor permeance 0.02 perms.

2.7 FIELD-APPLIED FABRIC-REINFORCING MESH

A. Woven Glass-Fiber Fabric: Approximately 2 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in. for covering pipe and pipe fittings.

B. Woven Polyester Fabric: Approximately 1 oz./sq. yd. with a thread count of 10 strands by 10 strands/sq. in., in a Leno weave, for pipe.

2.8 FIELD-APPLIED CLOTHS

A. Woven Glass-Fiber Fabric: Comply with MIL-C-20079H, Type I, plain weave, and presized a minimum of 8 oz./sq. yd.

2.9 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing.

C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Adhesive as recommended by jacket material manufacturer.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following. Where a specific manufacturer is listed in the Drawings, this shall be considered the Basis-of-Design.
a. Johns Manville; Ceel-Co or Zeston.
c. Proto Corporation; LoSmoke.
d. Speedline Corporation; SmokeSafe.

2. Color: White unless indicated otherwise.
3. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.

D. Metal Jacket:

 a. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper or 2.5-mil-thick polysurlyn.
 b. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper or 2.5-mil-thick polysurlyn.

2. Stainless-Steel Jacket: ASTM A 167 or ASTM A 240/A 240M.
 a. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper or 2.5-mil-thick polysurlyn.
 b. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper or 2.5-mil-thick polysurlyn.

E. Self-Adhesive Indoor or Outdoor Jacket: Multiple-ply laminated vapor barrier and waterproofing membrane for installation over insulation; consisting of aluminum, Tedlar, or laminate sheet with integral acrylic peel-and-stick adhesive with white, silver, or black facing as indicated.

1. Manufacturers: Subject to compliance with requirements, provide products by one of the following. Where a specific manufacturer is listed in the Drawings, this shall be considered the Basis-of-Design.
 a. 3M; VentureClad.
 b. Polyguard Products, Inc.; Alumaguard 60.

F. PVDC Jacket for Indoor Applications: 4-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84.

G. PVDC Jacket for Outdoor Applications: 6-mil-thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96/E 96M and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84.

2.10 PROTECTIVE SHIELDING GUARDS

A. Protective Shielding Pipe Covers:
 1. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

B. Protective Shielding Piping Enclosures:
 1. Description: Manufactured plastic enclosure for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with ADA requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 1. Verify that systems to be insulated have been tested and are free of defects.
 2. Verify that surfaces to be insulated are clean and dry.
 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

C. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

A. Install insulation in accordance with manufacturers’ instructions.

B. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
C. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system.

D. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.

E. Install insulation with longitudinal seams at top and bottom of horizontal runs.

F. Install multiple layers of insulation with longitudinal and end seams staggered.

G. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.

H. Keep insulation materials dry during application and finishing. Mineral fiber or calcium silicate insulation that is or has been wet shall be removed from the job site.

I. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.

J. Install insulation with least number of joints practical.

K. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

1. Install insulation continuously through hangers and around anchor attachments.
2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.

L. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.

M. Install insulation with factory-applied jackets as follows:

1. Draw jacket tight and smooth.
2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches on center.
3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches on center.
 a. For below-ambient services, apply vapor-barrier mastic over staples.
4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.

N. Cut insulation in a manner to avoid compressing insulation to less than 75 percent of its nominal thickness.

O. Repair joint separations and cracking due to thermal movement.

P. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

Q. For above-ambient services, do not install insulation to the following:
 1. Vibration-control devices.
 2. Testing agency labels and stamps.
 3. Nameplates and data plates.
 5. Handholes.
 6. Cleanouts.

3.4 PENETRATIONS

A. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 1. Seal penetrations with flashing sealant.
 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 4. Seal jacket to wall flashing with flashing sealant.

B. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

C. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 1. Comply with requirements in firestopping section.

D. Insulation Installation at Floor Penetrations:
 1. Pipe: Install insulation continuously through floor penetrations.
 2. Seal penetrations through fire-rated assemblies. Comply with requirements in firestopping section.
3.5 GENERAL PIPE INSULATION INSTALLATION

A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.

B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:

1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.

2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.

3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is more. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.

5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is more. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.

6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is more.

7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.

8. For services not specified to receive a field-applied jacket, except for flexible elastomeric, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.

9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.

C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
D. Install removable insulation covers at locations indicated. Installation shall conform to the following:

1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

3.6 INSTALLATION OF NON-FLEXIBLE PIPE INSULATION

A. On piping, install with lap joint attached using outward clinching staples, 3-inch centers, 1/4 inch from edge on hot piping. On cold piping, use self-sealing lap system or adhesive applied to both surfaces per manufacturer's recommendation. Do not staple cold piping. Butt adjoining sections of insulation tightly together and continue jacket by installing self-adhering butt strips over entire circumferential joint.

B. Installation of Insulation of Fittings

1. For pipe sizes 2 inches and smaller, finish with mineral fiber cement to thickness of adjoining pipe insulation.
2. Over 2 inches, insulate with mitered pipe insulation segments or preformed fiberglass fittings secured with vinyl faced insulation strapping tape or 20 ga galvanized annealed wire and finished with one coat of mineral fiber cement.
3. After cement is dry, finish with Glass Fab and seal with Foster 30-36 adhesive.
4. Prefabricated fitting covers approved for use at pipe fittings may be used instead of finishing method outlined above.
5. Install in accordance with manufacturer's recommendations

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where glass-cloth jackets are indicated, install directly over bare insulation or insulation with factory-applied jackets.

1. Draw jacket smooth and tight to surface with 2-inch overlap at seams and joints.
2. Embed glass cloth between two 0.062-inch-thick coats of lagging adhesive.
3. Completely encapsulate insulation with coating, leaving no exposed insulation.

B. Where FSK jackets are indicated, install as follows:
1. Draw jacket material smooth and tight.
2. Install lap or joint strips with same material as jacket.
3. Secure jacket to insulation with manufacturer’s recommended adhesive.
4. Install jacket with 1-1/2-inch laps at longitudinal seams and 3-inch-wide joint strips at end joints.
5. Seal openings, punctures, and breaks in vapor-retarder jackets and exposed insulation with vapor-barrier mastic.

C. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer’s recommended adhesive.

1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

D. Where PVDC jackets are indicated, install as follows:

1. Apply three separate wraps of filament tape per insulation section to secure pipe insulation to pipe prior to installation of PVDC jacket.
2. Wrap factory-presized jackets around individual pipe insulation sections with one end overlapping the previously installed sheet. Install presized jacket with an approximate overlap at butt joint of 2 inches over the previous section. Adhere lap seal using adhesive or SSL, and then apply 1-1/4 circumferences of appropriate PVDC tape around overlapped butt joint.
3. Continuous jacket can be spiral-wrapped around a length of pipe insulation. Apply adhesive or PVDC tape at overlapped spiral edge. When electing to use adhesives, refer to manufacturer's written instructions for application of adhesives along this spiral edge to maintain a permanent bond.
4. Jacket can be wrapped along length of roll with 2-inch-overlap seal. Use adhesive on the lap seal. Visually inspect lap seal for "fishmouthing," and use PVDC tape along lap seal to secure joint.
5. Repair holes or tears in PVDC jacket by placing PVDC tape over the hole or tear and wrapping a minimum of 1-1/4 circumferences to avoid damage to tape edges.

3.8 FINISHES

A. Pipe Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below.

1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.

B. Color: Final color as indicated. Vary first and second coats to allow visual inspection of the completed Work.

C. Do not field paint aluminum or stainless-steel jackets.
3.9 INDOOR PIPING INSULATION SCHEDULE

A. Domestic Cold Water:

1. NPS 2 or Smaller: Insulation shall be one of the following:
 a. Fiberglass: 1/2 inches thick

2. NPS 2-1/2 or Larger: Insulation shall be one of the following:
 a. Fiberglass: 1 inches thick

B. Domestic Hot and Recirculated Hot Water:

1. NPS 1-1/2 or Smaller: Insulation shall be one of the following:
 a. Fiberglass: 1 inches thick

2. NPS 2 and Larger: Insulation shall be one of the following:
 a. Fiberglass: 1-1/2 inches thick

C. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities: Insulation shall be as described in Protective Shielding Guards article above.

3.10 INDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

B. If more than one material is listed, selection from materials listed is Contractor's option.

C. Piping, Concealed: None.

D. Piping, Exposed:

 1. None.
 2. PVC, Color-Coded by System: 20 mils thick.

END OF SECTION 220719